Industrial Mineral Aggregate Amendment Affects Physical and Chemical Properties of Pine Bark Substrates

James S. Owen, Jr.1,2
North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Road, Aurora, OR 97002

Stuart L. Warren and Ted E. Bilderback
Department of Horticultural Science, North Carolina State University, Box 7609, Raleigh, NC 27695

Joseph P. Albano

Additional index words. media, phosphorus, bentonite, palygorskite, water

Abstract. Nonpoint source effluent containing nitrate N (NO3-N) and phosphorus (P) from containerized nursery production has garnered local, regional, and national concern. Industrial minerals have long been used as absorbents, agrochemical carriers, and barriers to retain heavy metals. Our objective was to determine the effects of a palygorskite–bentonite industrial mineral aggregate on the physical and chemical properties of a soilless substrate and the resulting impact on water and nutrient efficiency. The mineral aggregate had two particle size ranges (0.25 to 0.85 mm or 0.85 to 4.75 mm) in combination with two temperature pretreatments [low volatile material (LVM) or regular volatile material (RVM)]. A representative substrate (8 pine bark:1 coarse sand) of the southeastern United States nursery industry was also included in the study as a control. Cotoneaster dammeri C.K. Schneid. ‘Skogholm’ was grown in all substrates on collection pads that allowed for reapply effluent.

Currently, substrate modification to increase uptake efficiency is not a BMP. There has been little change in substrates since introduction of bark substrates as a result of cost, acceptance, and availability. Engineering a soilless substrate of softwood bark to retain inputs could increase water and nutrient uptake efficiencies. Industrial minerals such as clay are used as absorbents, agrochemical carriers, and barriers to retain heavy metals (Murray, 2000) and have been considered recently as an amendment for container substrates (Handreck and Black, 2002; Reed, 1996). Clay minerals can improve physical properties and increase pH buffering capacity in bark and peat-based substrates (Handreck and Black, 2002; Reed, 1996). Empirically, Warren and Bilderback (1992) compared rates (0, 27, 54, 67, and 81 kg·m-2) of arcillite in a pine bark substrate and reported arcillite increased available water (AW) and decreased ammonium N (NH4-N) and P effluent concentration with increasing arcillite rate. Growth of Sunglow azalea (Rhododendron L. ‘Sunglow’) increased curvilinearly with arcillite rate with the calculated optimum rate being 57 kg·m-2. Williams and Nelson (2000) investigated using small or large particle sizes of palygorskite, arcillite, or brick chips as a precharged source of P and K in peat:perlite-based substrates at 10%, 20%, and 30% (by vol.). Phosphorus discharged in the leachate was reduced by the precharged palygorskite (6% of added P leached) as compared with arcillite (18% P leached), brick chips (11% P leached), or a peat:perlite substrate (37% P leached).

Environmental issues are at the forefront of agricultural concerns throughout the United States and the world (Malakoff, 1998; Nosengo, 2003). Nitrate N (NO3-N) and phosphorus (P) are two of the pollutants that have caught the public’s attention because they are agents of methemoglobinemia in humans and hypoxia (Frink et al., 1999) and eutrophication (Carpenter, 2005; Hart et al., 2004) in waters.

Ornamental plant nurseries are a significant United States specialty crop agribusiness that covers ≈186,000 ha with over 7000 operations accounting for $4 billion of annual cash receipts (USDA, 2004). The majority (73%) of crops produced by the U.S. nursery industry are grown in containers with inert softwood barks as the substrate. Softwood barks of loblolly pine (Pinus taeda L.) from the southeast United States or softwood bark of Douglas fir [Pseudotsuga menziesii (Mirb.) Franco.] from the northwest United States are used as a component in container substrates as a result of their availability, favorable physical properties, and lack of detrimental chemical constituents (Handreck and Black, 2002). A saleable containerized crop can be produced quickly in bark substrates; however, water and nutrient uptake efficiencies may be 50% or less (Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005).

Best management practices (BMPs) for containerized plant production (Yeager et al., 1997) have been implemented widely in the United States. Increased production efficiency has been achieved by optimizing rates of fertilization using controlled-release fertilizers (CRFs), reducing water volume applied, and adjusting water application timing. However, current BMPs recommend CRFs be used to maintain substrate solution NO3-N and P at 15 mg·L-1 and 5 mg·L-1, respectively. Current U.S. Environmental Protection Agency (USEPA) regulations are 10 mg·L-1 NO3-N as maximum contamination level (MCL) for groundwater and a goal for total P MCL not to exceed 0.05 mg·L-1 in streams that drain into lakes or reservoirs and 0.10 mg·L-1 for streams that do not (USEPA, 1987). Thus, nutrient concentrations in water discharged from nurseries may exceed these regulated concentrations and goals using current BMPs without costly infrastructural changes to continuously contain, clean, and reapply effluent.
Interstratified palygorskite–bentonite is a common industrial mineral mined from the Fuller’s Earth District in southern Georgia and northern Florida. Before being used in industrial applications, the mineral is screened to an appropriate particle size range with the most popular size for the agriculture industry being 0.25 to 0.85 mm (Moll and Goss, 1997). Industrial clay minerals dried at ≈121 °C are described as regular volatile material (RVM), which remain soft and have 8% to 12% water by weight (Moll and Goss, 1997). The RVM product can be subjected to further heating (≈800 °C) and is then classified as a low volatile material (LVM), which is calcined or fixed, containing 0% to 1% water by weight (Robert Goss, Oil-Dri R&D, personal communication, 2002). Our objective was to determine the effects of a palygorskite–bentonite industrial mineral aggregate on the physical and chemical properties of a soilless substrate and the resulting impact on water and nutrient efficiency.

**Materials and Methods**

**Experimental design.** The experiment was a 2 (aggregate particle size) × 2 (mineral temperature pretreatment) factorial in a randomized complete block design with three replications with 10 plants in each replication. The treatments were pine bark-amended with palygorskite–bentonite mineral aggregate from Ochlocknee, GA (Oil-Dri Corp. of America, Chicago) with one of either two particle sizes (0.85 to 4.75 mm or 0.25 to 0.85 mm) that had been pretreated at one of two temperatures (RVM = 121 °C or LVM = 800 °C or less). All clay was added as an 8% (by vol.) substrate amendment. An additional substrate was included in the experimental design to represent the industry standard (control), which contained 11% sand (by volume) (8 pine bark:1 sand). All substrates were amended with 0.6 kg·m⁻³ ground dolomitic limestone [CaMg(CO₃)₂]. The 112-d experiment was conducted from 16 May 2002 to 5 Sept. 2002 at the Horticulture Field Laboratory (lat. 35°44'37"N; long. 78°41'59"W) located at North Carolina State University, Raleigh. Research plots received 41.2 cm of rain (average of 1.5 cm rainfall per event) for a total of 27 d.

**Water and nutrient management.** One hundred fifty rooted stem cuttings of Cotoneaster dammeri C.K. Schneid. (‘Skogholm’) liners with a 212-cm (5.4 cm × 5.4 cm × 7.3 cm) root ball were potted into 14-L containers (C-2000; Nursery Supplies, Chambersburg, PA) and placed on 15 separate plots, 10 containers per plot, which were designed to enable collection of all leachate leaving each plot. Leachate was unable to be collected when rainfall exceeded 0.8 cm. Plants were recorded for 30 s on the terminal 5 cm of an intact stem with ≈5 fully expanded leaves. Measurements were taken under natural light in which photosynthetic active radiation remained greater than 1896 μmol·m⁻²·s⁻¹. Average CO₂ concentration within the chamber was 325 ± 4 μmol·mol⁻¹ and relative humidity was maintained at 43% ± 1%. CO₂ exchange rate (CER) and gs were calculated using the LI-COR 6200 programs. In addition, dry weight and irrigation data were used to calculate water use efficiency (WUEp, Eq. [4]).

To determine if the clay treatments increased the water-buffering capacity of the substrate, irrigation of the remaining plants was discontinued at the end of the study. Leaf gas exchange was measured on one plant from each replication between 1030 and 1130 h EST and 1530 to 1630 h EST for 4 d with a portable IR gas exchange system (LI-COR 6200; LI-COR, Lincoln, NE). Data were recorded for 30 s on the terminal 5 cm of an intact stem with ≈5 fully expanded leaves. Measurements were taken under natural light in which photosynthetic active radiation remained greater than 1896 μmol·m⁻²·s⁻¹. Average CO₂ concentration within the chamber was 325 ± 4 μmol·mol⁻¹ and relative humidity was maintained at 43% ± 1%. CO₂ exchange rate (CER) and gs were calculated using the LI-COR 6200 programs. In addition, dry weight and irrigation data were used to calculate water use efficiency (WUEp, Eq. [4]).

\[ \text{WUE}_p = \frac{\text{total irrigation volume retained in substrate (mL)}}{\text{total plant dry weight (g)}} \]  

**Crop response.** At 112 d after treatment initiation (DAI), two containerized plants were randomly chosen per plot (total of six plants per treatment) and removed. Tops were severed at the substrate surface and roots were placed over a screen and washed with a high-pressure water stream to remove substrate. Tops and roots were dried at 65 °C for 5 d and weighed. Because of their size, tops were ground initially using a Model 4 bench, 1 HP Wiley Mill (Thomas Scientific, Swedesboro, NJ) to pass a 0.6-mm sieve. The material from the tops and roots was further ground separately through a Foss Tectar Cyclotec 1093 sample mill (Analytical Instruments, LLC, Golden Valley, MN) to pass a 0.5-mm sieve. Roots and tops were analyzed for N, P, K, Ca, Mg, S, Fe, Mn, B, and Mo by the Agronomic Division of the NCDA.

A nutrient budget was developed for each treatment to quantify the fate of recovered nutrients (RN; Eq. [2]) from the applied CRF: absorbed by plant, lost in leachate, remaining in substrate (Mehlich III extractable), or remaining in the fertilizer prill.

\[ \text{RN (mg)} = \sum \text{nutrient (mg)} - \text{plant + effluent + substrate + fertilizer prills} \]  

The nutrient budget was used to calculate nutrient uptake efficiency (NUE, Eq. [3]) of N and P.

\[ \text{NUE (%) = } \frac{\text{plant absorbed nutrient (mg)}}{\text{applied nutrient (mg)}} \times 100 \]  

To determine if the clay treatments increased the water-buffering capacity of the substrate, irrigation of the remaining plants was discontinued at the end of the study. Leaf gas exchange was measured on one plant from each replication between 1030 and 1130 h EST and 1530 to 1630 h EST for 4 d with a portable IR gas exchange system (LI-COR 6200; LI-COR, Lincoln, NE). Data were recorded for 30 s on the terminal 5 cm of an intact stem with ≈5 fully expanded leaves. Measurements were taken under natural light in which photosynthetic active radiation remained greater than 1896 μmol·m⁻²·s⁻¹. Average CO₂ concentration within the chamber was 325 ± 4 μmol·mol⁻¹ and relative humidity was maintained at 43% ± 1%. CO₂ exchange rate (CER) and gs were calculated using the LI-COR 6200 programs. In addition, dry weight and irrigation data were used to calculate water use efficiency (WUEp, Eq. [4]).

\[ \text{WUE}_p = \frac{\text{total irrigation volume retained in substrate (mL)}}{\text{total plant dry weight (g)}} \]  

**Substrate physical properties.** Ten cylindrical aluminum cores, five 347.5 cm³ and five 100 cm³, were placed in fallow.
containers of each substrate. These containers were placed adjacent to the plants in the research study and received equivalent irrigation and rainfall as the corresponding treatment. After 9 weeks, the 347.5-cm³ cores were extracted and total porosity, container capacity (CC), AW, and air-filled porosity were determined using the NCSU Porometer as described by Fonteno and Bilderback (1993). Unavailable water, held in the substrate at 1.5 MPa or greater, was determined with the 100-cm³ cores through a procedure developed by Milks et al. (1989). Bulk density (Db) was determined using oven-dried (110 °C) substrate in 347.5-cm³ cores. Particle size distribution of ~500 cm³ oven-dried substrate (110 °C) was determined gravimetrically using 6.30, 2.00, 0.71, 0.50, 0.25, or 0.106-mm soil sieves. Particles 0.106 mm or less were collected in a pan. Sieves and pan were shaken for 5 min with a RX-29/30 Ro-Tap test sieve shaker (278 oscillations/min, 150 taps/min) (W.S. Tyler, Mentor, OH).

Data analysis. All data were subjected to analysis of variance procedures (SAS Institute, 2001) with \( x \leq 0.10 \) to reduce the risk of a type II error (Marini, 1999). Treatment means were compared using orthogonal contrast statements. PROC REG and PROC NLIN were used to further investigate linear and nonlinear segmented trends associated with water and nutrient data. Join points for segmented lines denoted as \( X \), were determined using PROC NLIN.

Results and Discussion

Substrate physical properties. CC and AW were unaffected by mineral aggregate amendments, whereas RVM increased air space 3% (by vol.) compared with LVM (Table 1). However, CC and AW pooled over mineral aggregate amended substrates increased CC 5% (by vol.) and AW 4% (by vol.) compared with the control (sand-amended substrate). This increase represents ~500 mL of AW per container of aggregate-amended substrate more than the control. Thus, mineral aggregate-amended substrates increased container water-holding capacity without decreasing air space. Increased CC and AW were likely a result of the properties of the mineral aggregate other than particle size, because there were no notable differences in particle size distribution among the sand-amended and mineral aggregate-amended substrates (data not presented). Spomer (1998) hypothesized substrates containing expanded clay have intrapores containing water that is available to the plant, thus increasing water-buffering capacity or the capacity to hold more AW. The mineral used in this study, palygorskite, is a fibrous mineral with zeolitic pores that retain water. In addition, Spomer (1998) reported a substrate amended with clay had increased air space and tortuosity, possibly resulting in greater water retention in the container system. Riviere et al. (1990) also reported a 4% and 42% increase in total porosity and easily available water (available at 10 to 50 cm suction), respectively, when the clay rate increased in a brown peat-based substrate from 15% to 20% (by volume). Warren and Bilderback (1992) found amending pine bark with arcillite (0, 27, 54, 67, or 81 kg·m⁻³) changed pore size distribution, which increased AW curvilinearly and decreased

Table 1. Physical properties of substrates amended (by volume) with 11% sand (control) or 8% Georgiana bentonite–palygorskite clay mineral aggregate with two particle sizes and two temperature pretreatments.*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Container capacity</th>
<th>Air* space</th>
<th>Available water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>45(^{b})*</td>
<td>38</td>
<td>15(^{a})*</td>
</tr>
<tr>
<td>Temp. pretreatment(^{a})</td>
<td>LVM</td>
<td>51(^{c})</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>RVM</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Particle size (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25 to 0.85</td>
<td>50(^{d})</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>0.85 to 4.75</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Temp (T)</td>
<td>0.53(^{c})</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Size (S)</td>
<td>0.99</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>T \times S</td>
<td>0.45</td>
<td>0.84</td>
</tr>
</tbody>
</table>

*All substrates lay fallow under experimental field conditions for 60 d before analysis.

Pooled over mineral aggregate temperature pretreatment (n = 6).

Pooled over mineral aggregate particle size (n = 6).

Pooled over mineral aggregate temperature pretreatment (n = 6).

\(^{a}\)Predicted as percent volume at drainage.

\(^{b}\)Percent air space = total porosity – container capacity.

\(^{c}\)Percent available water = container capacity – unavailable water.

\(^{*}\)Industry representative substrate (n = 3); 8 pinebark:1 sand.

\(^{b}\)Asterisks denote significant difference from the mean value of the pooled mineral aggregates determined by orthogonal contrast statements (\( P \leq 0.05 \)).

Mineral aggregate temperature pretreatment (n = 3): low volatile material (LVM) = calcined, regular volatile material (RVM) = pasteurized.

Pooled over mineral aggregate particle size (n = 6).

Fig. 1. Cumulative irrigation water applied to Skogholm cotoneaster grown 112 d in pine bark substrates amended (by volume) with 11% sand (control) or 8% Georgiana bentonite–palygorskite clay mineral aggregate with two particle sizes. Segmented linear models were calculated for 0.25 to 0.85 mm: if \( x \leq 74 \), then \( y = -0.5 + 1.2 x, R^2 = 0.99 \); if \( x \geq 74 \), then \( y = -37.7 + 1.7 x, R^2 = 0.98 \); 0.85 to 4.75 mm: if \( x \leq 74 \), then \( y = -1.3 + 1.3 x, R^2 = 0.99 \); if \( x \geq 74 \), then \( y = -35.1 + 1.7 x, R^2 = 0.98 \); control: if \( x \leq 69 \), then \( y = -4.3 + 1.5 x, R^2 = 0.98 \); if \( x \geq 69 \), then \( y = -41.3 + 2.0 x, R^2 = 0.98 \).
air space linearly but had no affect on total porosity.

\[ D_b (\text{mean} = 0.21 \text{ g cm}^{-3} \pm 0.001 \text{ se}) \] was unaffected by mineral aggregate treatments, but \( D_b \) pooled over industrial aggregates was less than the control (\( \text{mean} = 0.30 \text{ g cm}^{-3} \pm 0.001 \text{ se} \)) (data not presented). Total porosity (\( \text{mean} = 84\% \pm 0 \text{ se} \)) and unavailable water (\( \text{mean} = 32\% \pm 0 \text{ se} \)) were also unaffected by any of the mineral aggregate treatments nor were they significantly different from the control (data not presented).

**Substrate water-buffering capacity.** LF was not different between treatments with an average of 0.22 \( \pm 0.006 \text{ se} \) for the entire study (data not presented). However, the sand-amended substrate required 1.5 L d\(^{-1}\) from 0 to 69 DAI to maintain a targeted LF of 0.2, whereas substrates amended with either aggregate particle size range required an average of 1.25 L d\(^{-1}\) between 0 and 74 DAI (Fig. 1). From 69 to 112 DAI, irrigation volume required to maintain a LF of 0.2 increased 33\% to 2.0 L d\(^{-1}\) (5.6 mL min\(^{-1}\)) for the control reflecting the increase in plant size resulting from crop establishment and growth. From 74 to 112 DAI, irrigation volume for substrates amended with either aggregate particle size range increased to 1.7 L d\(^{-1}\). This is a 13\% to 15\% decrease in daily water application volume. Mineral aggregate substrates, regardless of particle size, required 22 to 26 L less water per container over 112 d compared with the sand-amended substrate to produce equivalent Skogholm cotoneaster growth.

**Chemical buffering capacity.** Mineral aggregate amended substrates decreased NH\(_4\)-N and DRP effluent load an average of 39\% and 34\%, respectively, compared with the control (Figs. 2 and 3). Verhagen (personal communication, RHP Foundation, 2001) found the addition of a calcined clay component into peat-based substrates decreased water extractable P \( \approx 400\% \) and increased NH\(_4\) retention 200\% to 300\%.

Across all treatments, 80\% to 90\% of total NH\(_4\)-N captured in the effluent over 112 d was lost in the first 7 d (Fig. 2). This most likely was a result of the water-soluble N (Fast Start) associated with this specific CRF. From 1 to 7 DAI, the sand-amended substrate lost 18.5 mg d\(^{-1}\) NH\(_4\)-N, whereas the LVM and RVM aggregate-amended substrates lost 9.9 and 10.3 mg d\(^{-1}\) NH\(_4\)-N, respectively. At 8 DAI, the rate of NH\(_4\)-N loss decreased across all treatments. The rate of NH\(_4\)-N from substrates amended with LVM aggregates decreased 97\% to 0.28 mg d\(^{-1}\), whereas the rate from the sand-amended substrate decreased 94\% to 0.57 mg d\(^{-1}\) NH\(_4\)-N. At 33, 37, and 39 DAI for the sand, RVM, and LVM aggregate-amended substrates, respectively, NH\(_4\)-N loss from the container was negligible, a trend that continued for the rest of the 112-d study (Fig. 2). This was probably because of rapid oxidation of NH\(_4\) to NO\(_2\), root uptake, or leaching. Foster et al. (1983) reported NH\(_4\)-N sorption to pine bark required 20 d to stabilize and equilibrate; however, our data may simply be a result of the time for optimal edaphic conditions (i.e., pH, water content, and temperature) to arise in the substrate to sustain *Nitrosomonas* sp., the nitrifying bacteria. Establishment of microbes to maximize nitrification occurs usually within 21 to 35 d after potting plants into a pine bark substrate (Niemiera and Wright, 1986).

Aggregate temperature pretreatment and particle size reduced effluent DRP content compared with the control (Fig. 3). There was no significant effect of interaction of temperature pretreatment and particle size. LVM and particle size 0.25 to 0.85 mm further reduced effluent DRP compared with the RVM aggregate and particle size of 0.85 to 4.75 mm. Dissolved reactive P was lost linearly at a rate of 0.50 mg d\(^{-1}\) from 0 to 43 DAI for substrates amended with LVM aggregate, whereas substrates amended with RVM aggregate lost 0.71 mg d\(^{-1}\) from 0 to 46 DAI. The rate of DRP lost decreased at 43 or 46 DAI for substrates amended with LVM (0.15 mg d\(^{-1}\)) or RVM (0.26 mg d\(^{-1}\)) resulting in 35\% (17 mg) less DRP lost to leaching from 0 to 46 DAI for substrates amended with LVM.

From 0 to 44 DAI, the rate of DRP loss decreased 29\% when substrates were amended with 0.25 to 0.85 mm (0.52 mg d\(^{-1}\)) compared with substrates amended with 0.85 to 4.75 mm (0.7 mg d\(^{-1}\)) aggregates. After 45 DAI, the rate of effluent DRP decreased to 0.17 mg d\(^{-1}\) or 0.24 mg d\(^{-1}\) for 0.25 to 0.85 mm and 0.85 to 4.75 mm aggregate-amended substrates, respectively. This resulted in a 22\% (10 mg) decrease in cumulative effluent DRP in pine bark substrates amended with aggregates of 0.25 to 0.85 mm compared with 0.85 to 4.75 mm from 45 to 112 DAI.

From 0 to 49 DAI, the control substrate lost 0.91 mg d\(^{-1}\) DRP, which was 29\% to 79\% greater than DRP loss from the mineral aggregate-amended substrates. This reflects a lower capacity of the industry substrate (pine bark; sand) to retain the oxygen. After 49 DAI, the sand-amended substrate rate of DRP loss (0.21 mg d\(^{-1}\)) was less than substrates amended with 0.85 to 4.75 mm (0.24 mg d\(^{-1}\)) or RVM (0.26 mg d\(^{-1}\)) aggregates (Fig. 3). The aggregates in these substrates
could have been desorbing P resulting in greater quantities of P loss. This is supported by the increase in extractable P that occurs in a mineral versus sand amended substrate (Table 2). However, we speculate 0.25 to 0.85 mm or LVM aggregates possibly continued sorbing P because their rate of P release remained lower than other treatments, DRP at 0.17 mg d⁻¹ or 0.15 mg d⁻¹, respectively (Fig. 3). Extractable P averaged across mineral aggregate-amended substrates increased 89% and 87% when extracted with water or 0.1 M KCl, respectively, compared with the control substrate (Table 2). Thus, although the absolute quantities of extractable P varied with extractant, the quantities were consistent between mineral aggregate and sand-amended. It is uncertain why water resulted in greater extractable P than 0.1 M KCl. These differences in extractable P may have been a result of a different ionic strength and pH-buffering capacity of the extractant.

Mineral aggregate-amended substrates affected the chemical properties of the substrate by increasing K and S substrate content an average of 250% and 131%, respectively, when compared with the control (Table 3). Calcium and Mg substrate content also increased similarly when amended with a mineral aggregate amendment (data not presented). However, the quantities of these nutrients that were available to the plant were not known. Low S has been reported to limit plant growth in soilless substrates (Browder et al., 2005); however, little research has been conducted on the base cations. In addition, CEC of aggregate-amended substrates were increased an average of 75% when compared with the control. The average mineral aggregate-amended substrate raised pH 0.4 units above the control (Table 3). Furthermore, substrates amended with LVM mineral aggregates increased pH 0.5 above the RVM aggregates.

The increased nutrient-buffering capacity of substrates amended with mineral aggregates resulted in an average 32% increase in the top and root P content of Skogholm cotoneaster compared with the control (Table 4). The increased water-buffering capacity in association with P retention of the mineral aggregate-amended substrate resulted in a 20% to 48% decrease in effluent DRP load and a 125% to 154% increase in substrate water or KCl-extractable P, respectively, compared with the control. These factors combined to increase P uptake efficiency (PUE) from 27% in sand-amended substrates to an average 36% in aggregate-amended substrate. This was also reflected in the average daily effluent P concentration with the aggregate-amended substrate averaging 1.3 mg L⁻¹ (Fig. 4). Warren et al. (1995) reported resin-coated P in a CRF resulted in the highest P use efficiency (43%) with a low, constant rate of P loss at ≈1 mg d⁻¹ when growing Sunglow azalea in 3.8-L containers in a pine bark substrate.

Regardless of particle size, the LVM aggregate reduced the P lost in the effluent compared with the control, whereas RVM did
Phosphorus (mg) Control LVM RVM LVM RVM
Leachate DRP 61* 24 47 40 bc 50 ab
Substrate extract DRP (Mehlich III)
Root 25 c 34 b 33 b 33 b 42 a
Top 186 b 238 ab 246 a 224 a 264 a

c | LVM | RVM | LVM | RVM
K | 26* | 29* | 8* | 5.1*
S | 64 | 69 | 13 | 5.2

Table 4. Distribution of P for Skogholm cotoneaster grown 112 d in pine bark substrates amended (by volume) with 11% sand (control) or 8% Georgiana bentonite–palygorskite clay mineral aggregate with two temperature pretreatments and two particle sizes.

<table>
<thead>
<tr>
<th>Substrate nutrient content</th>
<th>Cation exchange capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>K</td>
</tr>
<tr>
<td>Control*</td>
<td>26*</td>
</tr>
<tr>
<td>Temp. pretreatment*</td>
<td>LV</td>
</tr>
<tr>
<td>Particle size, mm 0.25 to 0.85</td>
<td>106*</td>
</tr>
<tr>
<td>0.85 to 4.75</td>
<td>75</td>
</tr>
<tr>
<td>Temp (T)</td>
<td>0.07*</td>
</tr>
<tr>
<td>Size (S)</td>
<td>0.03</td>
</tr>
<tr>
<td>T × S</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Not at the initiation of the experiment, all substrates were amended with 0.6 kg m⁻³ ground dolomitic limestone [CaMg(CO₃)₂] and each container had 60 g 17N-5P₂O₅-12K₂O 5 to 6 months controlled-release fertilizer containing 2.3 g S surface incorporated.

Nutrient content determined using Mehlich III extractant after 112 d.

% Nutrient determined using pourthrough method after 65 d.

Industry representative substrate (n = 3); 8 pine bark: 1 sand (by volume).

Asterisks denote significant difference from the mean value of the pooled mineral aggregates determined by orthogonal contrast statements, P ≤ 0.05.

Mineral aggregate temperature pretreatment (n = 3): low volatile material (LVM) = calcined, regular volatile material (RVM) = pasteurized.

Pooled over mineral aggregate particle size (n = 6).

Pooled over mineral aggregate temperature pretreatment (n = 6).

P values.

Average effluent DRP concentration for the 112 d decreased 26% from 1.8 mg L⁻¹ to 1.3 mg L⁻¹ for the sand- versus mineral-amended pine bark substrate, respectively (Fig. 4). Groves et al. (1998b) reported current BMP substrate solution P recommendations (5 mg L⁻¹ to 10 mg L⁻¹) could not be maintained when irrigating 3.8-L containerized Skogholm cotoneaster with 800 mL d⁻¹; however, top and root dry weight were maximized at this irrigation volume, although observed substrate solution P concentrations decreased as low as 1.8 mg L⁻¹ and 0.1 mg P L⁻¹ at 60 DAI and 119 DAI, respectively (Groves et al., 1998a). Lea-Cox and Ristvey (2003) suggested an 80% reduction in current rate of P application, thus making the optimal P substrate solution concentration 2 mg L⁻¹ or less, increasing PUE to 75% when adequate N is applied.

Effluent N content, total plant N content, and N uptake efficiency were unaffected by substrate amendment (Table 5). However, mean daily effluent N concentration over the 112-d study was reduced 22% from 8.4 mg L⁻¹ to 6.5 mg L⁻¹ when the pine bark substrate was amended with an LVM aggregate versus RVM aggregate (Fig. 4). CRF prills contained 26% of the total applied N after 112 DAI, 42% being NH₄-N and 10% NO₃-N accounting for 55% of the recovered N after 112 DAI (Table 5). Three percent (mean = 149 mg ± 13 se) of N was leached and 38% (mean = 1814 mg ± 30 se) of N was taken up by the plant. No substrate NO₃-N or NH₄-N could be detected with either water or 0.1 mol L⁻¹ KCl extractant. Nitrogen use efficiency in this study is lower than previously reported, probably because it was calculated based on elemental N and not N species (Tyler et al., 1996). The authors hypothesize that the unaccountable portion of N was primarily lost through denitrification and a minor portion of N was lost to immobilization or volatilization.

Plant response. Top (160 g ± 4 se) and root (mean = 30 g ± 1 se) dry weight of Skogholm cotoneaster were unaffected by any of the treatments (data not presented). However, water required to produce 1 g dry weight (WUEP) was affected by treatments (data not presented). Skogholm cotoneaster grown in aggregate-amended substrates required an average of 607 ± 4 mL to produce 1 g of plant dry weight, whereas cotoneaster grown in the control substrate required 731 mL to produce 1 g of plant dry weight, resulting in a 17% increase in WUEP. We speculate this is a reflection of increased CC and AW in aggregate-amended substrates (Table 1).

Phosphorus (Table 4) and K (data not presented) content of Skogholm cotoneaster were 32% and 49% greater, respectively, when grown in a mineral-amended substrate versus sand-amended substrate. Top or root N, Ca, Mg, S, Fe, Mn, B, Mo, and Cl content were unaffected by mineral aggregate amendments nor were there any differences with the control (data not presented).

CER was 20% greater in Skogholm cotoneaster grown in mineral-amended substrates (mean = 8.2 μmol·m⁻²·s⁻¹ · ± 0.3 se) versus Skogholm cotoneaster grown in the control substrate (mean = 6.9 μmol·m⁻²·s⁻¹ ± 0.9 se) without induced drought stress (data not presented). CER and ge was 25% and 33% greater, respectively, after 42 h without irrigation when cotoneaster was grown in a mineral-amended substrate compared with...
cotoneaster grown in the control substrate (Owen et al., 2003). Mineral aggregate temperature pretreatment had greater influence on CER and $g_s$ than mineral aggregate particle size. After 42 h without irrigation, plants grown in substrates amended with LVM mineral aggregates had 27% higher CER (mean = 8.7 m mol C m$^{-2}$ s$^{-2}$ ± 0.8 SE) and 43% higher $g_s$ (mean = 0.13 mol m$^{-2}$ s$^{-1}$ ± 0.02 SE) compared with plants grown in substrates amended with RVM aggregates (mean CER = 6.9 m mol m$^{-2}$ s$^{-2}$ ± 0.6 SE; mean $g_s$ = 0.09 mol m$^{-2}$ s$^{-1}$ ± 0.01 SE) (Owen et al., 2003). Plant response was further separated by particle size, with plants grown in substrates amended with 0.25- to 0.85-mm aggregates (mean = 0.03 mol m$^{-2}$ s$^{-1}$ ± 0.006 SE) having greater $g_s$ compared with plants grown in substrates amended with 0.85- to 4.75-mm aggregates (mean = 0.02 mol m$^{-2}$ s$^{-1}$ ± 0.001 SE) after 67 h without irrigation. After 71 h without irrigation, all treatments had similar levels of CER and $g_s$ (data not presented).

Pine bark amended with industrial mineral aggregates increased water and nutrient efficiency without affecting root or top growth of Skogholm cotoneaster. This modified substrate offers a way to reduce environmental impact of nursery crop production compared with traditional means of lowering input quantities. If input quantities become growth-limiting, the result is decreased nutrient uptake efficiency attributable to less plant growth and root exploitation, which results in increased mineral nutrient leaching (Tyler et al., 1996). Mineral aggregate-amended substrates increased WUE$_P$ 17% and decreased water applied 26 L per 14-L container over the growing season when compared with pine bark amended with sand. Substrate CEC was greater than 75% in mineral- versus sand-amended substrates increasing substrate base cation content.

---

**Table 5. Distribution of N for Skogholm cotoneaster grown for 112 d in pine bark-based substrates amended (by volume) with sand at 11% or industrial aggregate at 8%.

<table>
<thead>
<tr>
<th>Elemental N (mg)</th>
<th>Pooled Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent Nitrate-N</td>
<td>72 ± 4</td>
</tr>
<tr>
<td>Ammonium-N</td>
<td>77 ± 11</td>
</tr>
<tr>
<td>Cotoneaster</td>
<td>1944 ± 30</td>
</tr>
<tr>
<td>Substrate</td>
<td>0</td>
</tr>
<tr>
<td>Fertilizer prill Nitrate-N</td>
<td>536 ± 28</td>
</tr>
<tr>
<td>Ammonium-N</td>
<td>2088 ± 92</td>
</tr>
<tr>
<td>N uptake efficiency* (%)</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>Recovered Elemental N*</td>
<td>4718 ± 117</td>
</tr>
<tr>
<td>Percent*</td>
<td>46 ± 117</td>
</tr>
</tbody>
</table>

*All treatments had 10,200 mg of elemental N top-dressed and surface-incorporated at the initiation of the experiment.

Mean ± SE.

N efficiency = [plant N + (plant N applied – N remaining in fertilizer prill)] × 100.

Recovered N = leachate + plant + substrate + fertilizer prill.

Percent recovered N = (recovered N ÷ applied N) × 100.

---

Fig. 4. Daily effluent nutrient concentration of NO$_3$-N and dissolved reactive phosphorus (DRP) for Skogholm cotoneaster grown 112 d in pine bark substrates amended (by volume) with 11% sand (control) or 8% Georgiana bentonite-palygorskite clay mineral aggregate with two temperature pretreatments (LVM or RVM). All treatments had 5.1 g NO$_3$-N and 1.3 g of elemental phosphorus surface incorporated at the initiation of the experiment. Municipal water applied contained an average NO$_3$-N and P concentration of less than 0.1 mg L$^{-1}$ and less than 0.05 mg L$^{-1}$, respectively. LVM = low volatile material; RVM = regular volatile material.
Mineral aggregate-amended substrate had a 125% to 154% increase in KC1/water-extractable P, which in turn raised top P content of Skogholtm cotoneaster 32% compared with the control. Average daily effluent DRP concentration was 0.8 mg L⁻¹, which is greater than the USEPA MCL goal for waters. Therefore, with current rate of P fertilization, effluent concentrations that meet USEPA criteria may not be attainable for nurseries recycling water alone. Average daily NO₃-N concentration remained below USEPA MCLs from 20 to 112 DAI. A pine bark soilless substrate amended with 0.25 to 0.85 mm LVM industrial mineral aggregate can reduce effluent DRP and NH₄-N and reduce water application volume when compared with a sand-amended bark-based substrate without sacrificing plant growth.

**Literature Cited**


